Ukkaskadgel.ru

Документооборот онлайн
21 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Средние величины арифметическая гармоническая Мода Медиана

7. Средние величины (св). Средние арифметические. Мода и медиана.

Под СВ понимается обобщающий показатель типичного уровня варьирующего количественного признака на единицу совокупности в определенном месте и в определенное время. СВ обязательно является именованной. СВ бывают двух видов: 1) степенные – представляют собой абстрактные характеристики совокупности (средняя арифметическая, средняя гармоническая, средняя квадратическая и средняя геометрическая); 2) структурные выражаются конкретными величинами, совпадающими в какими-то определенными вариантами совокупности (мода, медиана).

Средняя арифметическая и средняя гармоническая наиболее распространенные виды средней, получивших широкое применение в плановых расчетах, при расчете общей средне из средних групповых, а также при выявлении взаимосвязи между признаками с помощью группировок. Выбор средней арифметической и средней гармоничской определяется характером имеющей в распоряжении исследователя информации.

Средняя квадратическая применяется для расчета среднего квадратического отклонения, являющегося показателем вариации признаков, а также в технике (например, при сооружении трубопроводов).

Средняя геометрическая (простая) используется при вычислении среднего коэффициента роста (темпа) в рядах динамики, если промежутки времени, к которым относятся коэффициенты роста, одинковы. Если средние коэффициенты роста относятся к периодам различной продолжительности, то общий средний коэффициент роста за весь период определяется по формуле средней геометрической взвешенной.

Структурные средние – мода и медиана – в отличие от степенных выступают как конкретные величины, совпадающие с вполне определенными вариантами совокупности. Это делает их незаменимыми при решения ряда практических задач.

Модой называется значение признака, которое наиболее часто встречается в совокупности (в статистическом ряду).

Медианой называется значение признака, которое лежит в середине ранжированного ряда и делит этот ряд на две равные по численности части.

Ранжированный ряд – ряд, расположенный в порядке возрастания или убывания значений признака.

Для определения медианы сначала определяют ее место в ряду, используя формулу

NMe = ——-, где n – число членов ряда.

Если ряд состоит из четного числа членов, то за медиану условно принимают среднюю арифметическую из двух срединных значений.

8. Вариационный ряд (вр) и его изучение. Построение ряда. Виды рядов.

Различия индивидуальных значений признака у единиц совокупности называют вариацией признака. Изучение вариации в переделах однородной группы предполагает использование следующих приемов: построение ВР (ряда распределения); его графическое изображение, исчисление основных характеристик распределения.

Построение ВР сводится к созданию групповой таблицы, построенной по количественному признаку, в сказуемом которой показывается число единиц в каждой группе. Тем самым такая таблица фактически представляет собой совокупность сочетания вариантов и соответствующим им частот. Различие индивидуальных значений признака у единицы совокупности называются вариацией признака.

По характеру вариации значений признака различают: 1) Признаки с прерывным изменением (дискретные); 2) признаки с непрерывным изменением (непрерывные)

Признаки с прерывным изменением могут принимать лишь конечное число определенных значений. Для них применяется построение дискретного ряда. В первой графе ряда указываются конкретные значения каждого индивидуального значения признака, во второй графе – численность единиц с определенным значением признака.

Для признака, имеющего непрерывное изменение, строится интервальный ВР, состоящий также как дискретный ряд, из двух граф (варианты и частоты). При его построении в первой графе отдельные значения признака указываются в интервале «от – до», во второй графе – число единицы, входящих в интервал. Интервалы образуются, как правило, равные и закрытые.

Глава 5. Средние величины

5.2. Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качестве структурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными.

Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

,

где Xi – варианта (значение) осредняемого признака;

m – показатель степени средней; n – число вариант.

Читать еще:  Образец произвольного акта для непризнания несчастного случая

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

,

где Xi – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;

m – показатель степени средней;

fi – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:

средняя гармоническая, если m = -1;

средняя геометрическая, если m® 0;

средняя арифметическая, если m = 1;

средняя квадратическая, если m = 2;

средняя кубическая, если m = 3.

Формулы степенных средних приведены в табл. 5.1.

Виды степенных средних

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средняя арифметическая и средняя гармоническая взвешенные. Выбор вида степенной средней определяется экономическим содержанием задачи и наличием данных.

Рассмотрим, известные вам, среднюю арифметическую простую и взвешенную. Приведем в качестве примера расчет среднего возраста студентов в группе из 10 человек:

Средний возраст рассчитаем по формуле простой средней:

Сгруппируем исходные данные. Получим следующий ряд распределения:

Возраст, Х лет

В результате группировки получаем новый показатель – частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую чаще всего применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = X·f).

Например, есть данные о реализации продукта одного вида на трех рынках города:

Требуется рассчитать среднюю цену, по которой продавался товар.

При расчете средней цены на один и тот же товар, который продается в трех разных торговых точках, необходимо выручку от реализации продукции поделить на количество реализованной продукции.

Предположим, мы располагаем только данными о ценах на трех рынках и о количестве товара, проданного на каждом их них. При этом цены на отдельных рынках выступают в качестве вариантов, а количество проданного товара – в качестве весов. Тогда средняя цена определится по средней арифметической взвешенной, то есть

Теперь предположим, что количество проданного товара неизвестно, а известны лишь цены и выручка от продажи. В этом случае логические рассуждения остаются теми же, но расчет следует записать в форме средней гармонической взвешенной.

Чтобы исчислить среднюю, обозначим x·f=М, откуда f=М/x. Преобразуем формулу средней арифметической так, чтобы по имеющимся данным x и М можно было исчислить среднюю.

В формулу средней арифметической взвешенной вместо x·f подставим М, вместо f – отношение М/x и получим формулу средней гармонической взвешенной:

Результат, как и следовало ожидать, получился тот же.

Рассмотрим еще один пример расчета средней гармонической взвешенной. Допустим, в результате проверки двух партий муки потребителям установлено, что в первой партии муки высшего сорта было 3942 кг., что составляет 70,4% общего веса муки этой партии. Во второй партии муки высшего сорта было 6520 кг., что составляет 78,6% общего веса муки этой партии. Необходимо определить процент муки высшего сорта в среднем по первой и второй партиям вместе.

Средний процент муки высшего сорта по двум партиям определяем по формуле средней гармонической взвешенной:

В том случае, если объемы явлений, т.е. произведения, по каждому признаку равны, применяется средняя гармоническая простая. К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т. д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Например, две автомашины прошли один и тот же путь: одна со скоростью 60 км/час, а вторая – 80 км/час. Тогда средняя скорость составит:

Читать еще:  Образец профстандарта инженерамеханика в 2021 году

,

где — сумма обратных значений вариант; n – число вариант.

Средняя геометрическая – это величина, используемая как средняя из отношений или в рядах распределения, представленных в виде геометрической прогрессии.

Предположим, произведены инвестиции, приносящие ежегодный доход, процент которого от года к году различается. Например, в течение 5 лет % дохода за первый год есть i1 , за второй год — i2, за третий год —i3, за четвертый год – i4 , за пятый год – i5 Доход на инвестиции начисляется один раз в год. После каждого года сумма, равная процентному приросту, добавляется к сумме счета.

Необходимо вычислить средний уровень дохода за пять лет.

Можно сложить i1, i2, i3, i4, i5 и разделить на 5. Полученная величина будет арифметической средней уровня дохода за 5 лет.

Однако, заметим следующее. Если первоначальная сумма инвестиций — Р, то после первого года она возрастает и становится P(1+i1). В конце второго года эта сумма составит P . (1+i1)(1+i2) и так далее. По истечении пяти лет сумма составит F=P . (1+i1)(1+i2)(1+i3)(1+i4)(1+i5). Если мы хотим определить средний процент дохода i, который даст нам сумму дохода F по истечении пяти лет при прибавлении ежегодного накопленного прироста к сумме вклада, то рассчитаем коэффициент, который находится из следующего уравнения:

Решение этого уравнения находится по формуле:

,

где (i+1) — геометрическая средняя из (1+i1), (1+i2), (1+i3), (1+i4), (1+i5).

Предположим, что n = 2 года, i1 = 0,10 и i2 = 0,05.

Геометрическая средняя от (1+i1) и (1+i2) есть:

Эта средняя дает рост по вкладу за два года – 0,0747 или 7,47%. Если бы мы рассчитывали среднюю арифметическую, то получили бы

x = (0,10 + 0,05) / 2 = 0,075,

что несколько отличается от геометрической средней. Разница в данном примере невелика, но расчет по формуле средней геометрической более верен.

Важно знать не только формальные методы исчисления средних величин, но и правила корректного выбора средней. Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым [2] . Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины.

[2] Боярский А.Я. Теоретические исследования по статистике: Сб. Науч. Трудов.-М.: Статистика,1974. С. 19-57.

Мода и медиана

Медиана в статистке

Медиана — это такое значение признака, которое разделяет ранжированный ряд распределения на две равные части — со значениями признака меньше медианы и со значениями признака больше медианы. Для нахождения медианы, нужно отыскать значение признака, которое находится на середине упорядоченного ряда.

Посмотреть решение задачи на нахождение моды и медианы Вы можете здесь

В ранжированных рядах несгруппированные данные для нахождения медианы сводятся к поиску порядкового номера медианы. Медиана может быть вычислена по следующей формуле:

где Хm — нижняя граница медианного интервала;
im — медианный интервал;
Sme— сумма наблюдений, которая была накоплена до начала медианного интервала;
fme — число наблюдений в медианном интервале.

Свойства медианы

  1. Медиана не зависит от тех значений признака, которые расположены по обе стороны от нее.
  2. Аналитические операции с медианой весьма ограничены, поэтому при объединении двух распределений с известными медианами невозможно заранее предсказать величину медианы нового распределения.
  3. Медиана обладает свойством минимальности. Его суть заключается в том, что сумма абсолютных отклонений значений х, от медианы представляет собой минимальную величину по сравнению с отклонением X от любой другой величины

Графическое определение медианы

Для определения медианы графическим методом используют накопленные частоты, по которым строится кумулятивная кривая. Вершины ординат, соответствующих накопленным частотам, соединяют отрезками прямой. Разделив поп олам последнюю ординату, которая соответствует общей сумме частот и проведя к ней перпендикуляр пересечения с кумулятивной кривой, находят ординату искомого значения медианы.

Читать еще:  Северная надбавка в красноярске 2021

Определение моды в статистике

Мода — значение признака, имеющее наибольшую частоту в статистическом ряду распределения.

Определение моды производится разными способами, и это зависит от того, представлен ли варьирующий признак в виде дискретного или интервального ряда.

Нахождение моды и медианы в контрольных по статистике происходит путем обычного просматривания столбца частот. В этом столбце находят наибольшее число, характеризующее наибольшую частоту. Ей соответствует определенное значение признака, которое и является модой. В интервальном вариационном ряду модой приблизительно считают центральный вариант интервала с наибольшей частотой. В таком ряду распределения мода вычисляется по формуле:

где ХМо — нижняя граница модального интервала;
imo — модальный интервал;
fм0, fм0-1,, fм0+1 — частоты в модальном, предыдущем и следующем за модальным интервалах.

Модальный интервал определяется по наибольшей частоте.

Мода широко используется в статистической практике при анализе покупательного спроса, регистрации цен и т. д.

Соотношения между средней арифметической, медианой и модой

Для одномодального симметричного ряда распределения средняя арифметическая, медиана и мода совпадают. Для асимметричных распределений они не совпадают.

К. Пирсон на основе выравнивания различных типов кривых определил, что для умеренно асимметричных распределений справедливы такие приближенные соотношения между средней арифметической, медианой и модой:

8.3. Средние величины в статистике

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, являются средние показатели (средняя величина).

Средняя величина – представляет обобщенную количественную характеристику признака в статистической совокупности в конкретных условиях места и времени.

Показатель в форме средней величины выражает типичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Он отражает уровень этого признака, отнесенный к единице совокупности.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности.

Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные.

  • Например, курс акций корпорации в основном определяется финансовыми результатами ее деятельности. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу.

Сущность средней заключается, в том, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенно­стей, присущих отдельным единицам.

ВИДЫ СРЕДНИХ ВЕЛИЧИН наиболее часто применяемых на практике:

  • средняя арифметическая;
  • средняя гармоническая;
  • средняя геометрическая;
  • средняя квадратическая.

Выбор средней величины зависит от содержания осредняемого признака и конкретных данных, по которым ее приходится вычислять.

  • Средняя арифметическая простая (невзвешенная) – вычисляется когда каждый вариант совокупности встречается только один раз.
  • Средняя арифметическая (взвешенная)вариантыповторяютсяразличное число раз , при этом число повторений вариантов называется частотой, или статистическим весом.
ФОРМУЛЫ СРЕДНИХ ВЕЛИЧИН
  • Средняя арифметическая простая – самый распространенный вид средней величины, рассчитывается по формуле (8.8):

  • гдехi – вариант,аn – количество единиц совокупности.
  • Пример вычисления средней арифметической простой. Провели опрос о желаемом размере заработной платы у пяти сотрудников офиса. По результатам опроса выяснили, что желаемый размер заработной платы составляет соответственно для каждого сотрудника: 50000, 100000, 200000, 350000, 500000 рублей человек. Рассчитаем среднюю арифметическую простую по формуле (8.8):Вывод: в среднем желаемый размер заработной платы по результатам опроса 5-ти человек составил 240 тысяч рублей.
  • Средняя арифметическая взвешенная формула 8.9.

  • гд е хi – вариант, а fi – частота или статистический вес.
  • Пример вычисления средней арифметической взвешенной. Результаты опроса всех работников офиса приведены в табл. 8.2.

Таблица 8.2 – Результаты опроса работников офиса

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector